Julie Harris, P. George Lovell, Olivier Penacchio, Philip Cammack, Innes Cuthill, Graeme Ruxton (funded by BBSRC)
Many species are counter-shaded: the dorsal surface is darker than the ventral. It has been proposed that counter-shading offers the animal camouflage. There are two potential accounts of its evolution: (i) counter-shading enables the animal to match its background: when viewed from above the dorsal surface is darker and matches the ground, when viewed from below its lighter ventral matches the sky. (ii) Counter-shading is self-shadow concealment. The image of a 3D uniform coloured object will exhibit a shading pattern, determined by its shape and the light-source direction. Visual shape-from-shading brain processes allow humans to perceive 3D shape even though the retinal image is 2D. A counter-shaded animal disrupts the pattern of shading coming from the light-shape interaction. In the extreme, the shading could cancel out, impeding detection of 3D shape and affecting visibility. Using calibrated cameras we will quantify counter-shading in animals and develop mathematical models to test whether the observed patterns match those expected for the hypotheses above. The models will predict which patterns of shading are best suited to hiding the animal. In laboratory experiments, we will test how well optimal counter-shading patterns fool human visual systems, to probe the details of counter-shading processing. We will also test using bird visual systems, to examine the generality of success of the counter-shading strategies. Finally, field studies will provide the ultimate test: whether the optimal shading patterns from our simulations do improve concealment from birds in natural lighting environments. Our project will determine why counter-shading has evolved in diverse species and the extent to which mammalian (human) and bird visual systems possess visual mechanisms sensitive enough to detect prey despite theoretically optimal counter-shading.